Lecture 6

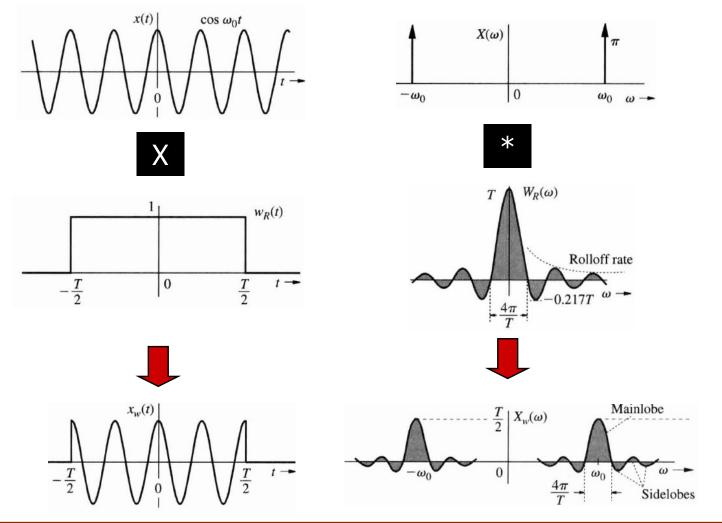
Windowing Effects & Discrete Fourier Transform

Peter Cheung Dyson School of Design Engineering Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/ E-mail: p.cheung@imperial.ac.uk

Windowing and its effect

 Extracting a segment of a signal in time is the same as multiplying the signal with a rectangular window:



Spectral spreading

Energy spread out from $\omega 0$ to width of $2\pi/T$ – reduced spectral resolution.

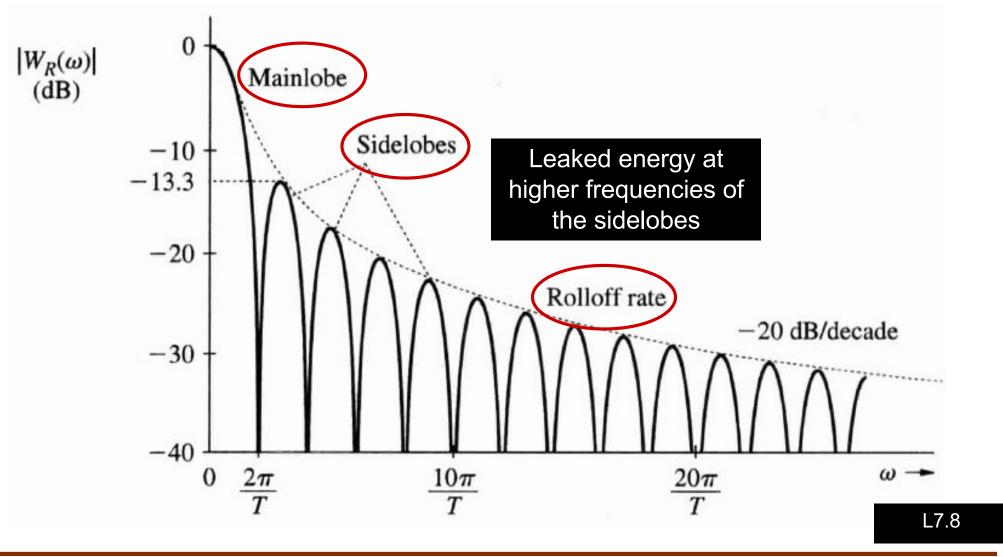
Leakage

Energy leaks out from the mainlobe to the sidelobes.

L7.8

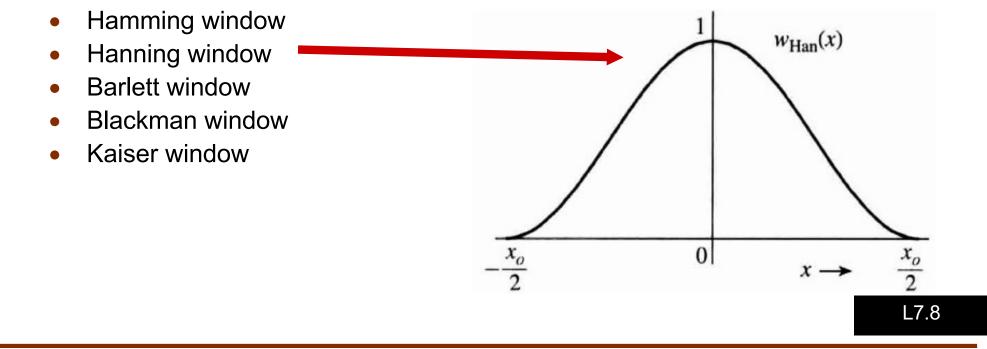
Mainlobe & Sidelobes in dB

• Detail effects of windowing (rectangular window):



Remedies for side effects of truncation

- Make mainlobe width as narrow as possible → implies as wide a window as possible.
- 2. Avoid big discontinuity in the windowing function to reduce leakage (i.e. high frequency sidelobes).
- 3. 1) and 2) above are incompatible therefore needs a compromise.
- Commonly replace rectangular window with one of these:

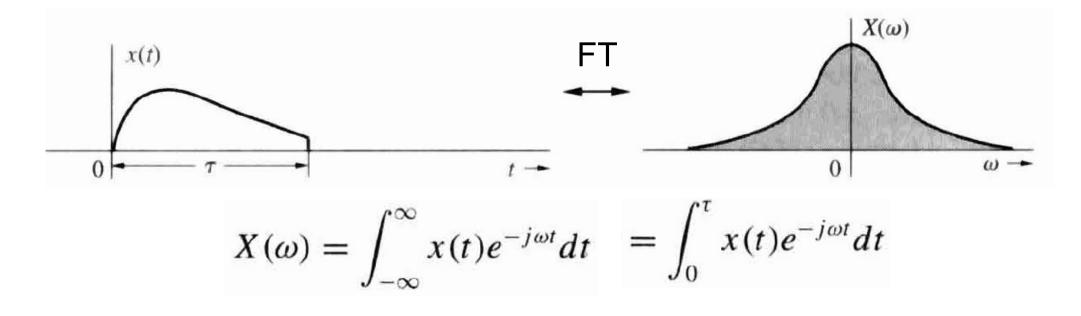


Comparison of different windowing functions

No.	Window w(t)	Mainlobe Width	Rolloff Rate (dB/oct)	Peak Sidelobe level (dB)
1	Rectangular: rect $\left(\frac{t}{T}\right)$	$\frac{4\pi}{T}$	-6	-13.3
2	Bartlett: $\Delta\left(\frac{t}{2T}\right)$	$\frac{8\pi}{T}$	-12	-26.5
3	Hanning: 0.5 $\left[1 + \cos\left(\frac{2\pi t}{T}\right)\right]$	$\frac{8\pi}{T}$	-18	-31.5
4	Hamming: $0.54 + 0.46 \cos\left(\frac{2\pi t}{T}\right)$	$\frac{8\pi}{T}$	-6	-42.7
5	Blackman: $0.42 + 0.5 \cos\left(\frac{2\pi t}{T}\right) + 0.08 \cos\left(\frac{4\pi t}{T}\right)$	$\frac{12\pi}{T}$	-18	-58.1
6	Kaiser: $\frac{I_0 \left[\alpha \sqrt{1 - 4 \left(\frac{t}{T}\right)^2} \right]}{I_0(\alpha)} 0 \le \alpha \le 10$	$\frac{11.2\pi}{T}$	-6	$-59.9 \ (\alpha = 8.168$

Spectral Sampling (1)

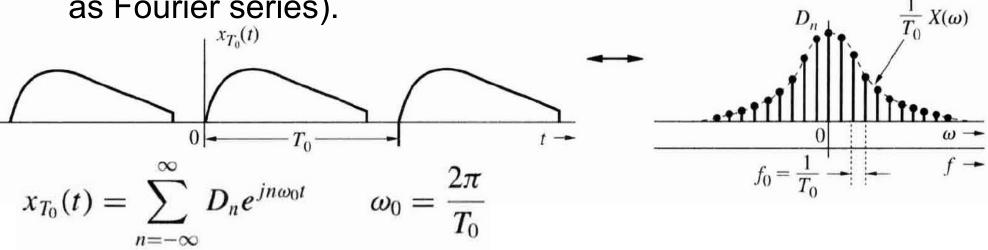
- As expected, time domain sampling has a dual: spectral sampling.
- Consider a time limited signal x(t) with a spectrum $X(\omega)$.



L8.4

Spectral Sampling (2)

If we now CONSTRUCT a periodic signal x_{To}(t), we will expect the spectrum of this signal to be discrete (expressed as Fourier series).



where $D_n = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jn\omega_0 t} dt = \frac{1}{T_0} \int_0^{\tau} x(t) e^{-jn\omega_0 t} dt$

 $D_n=\frac{1}{T_0}X(n\omega_0)$

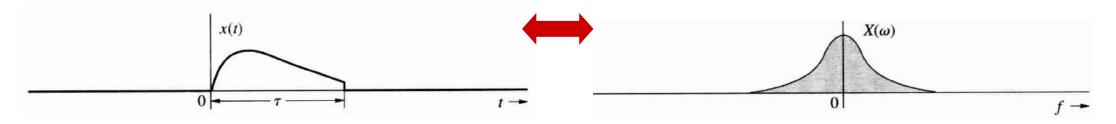
therefore

L8.4

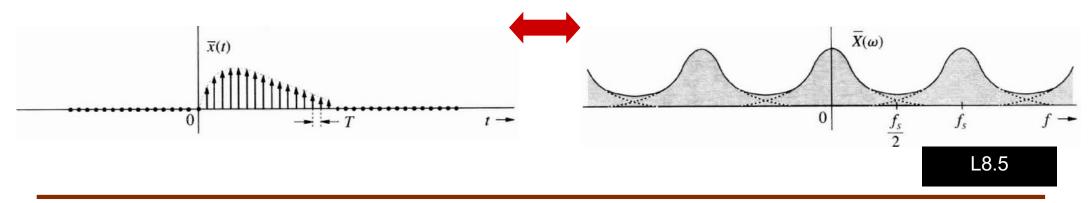
PYKC 29 Jan 2024

The Discrete Fourier Transform (DFT) (1)

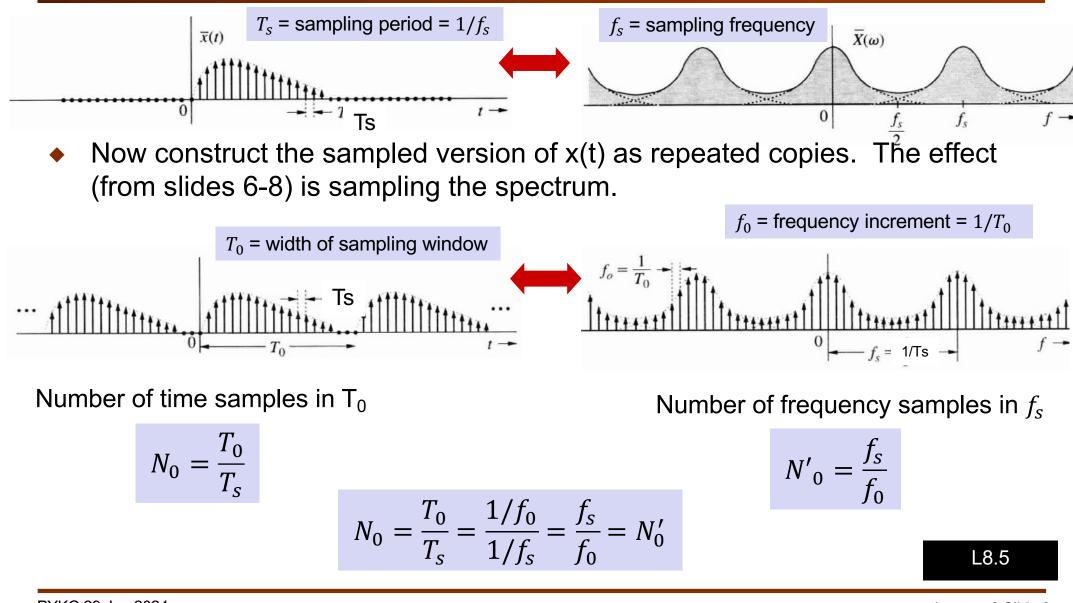
- Fourier transform is computed (on computers) using discrete techniques.
- Such numerical computation of the Fourier transform is known as Discrete Fourier Transform (DFT).
- Begin with time-limited signal x(t), we want to compute its Fourier Transform X(ω).



• We know the effect of sampling in time domain:

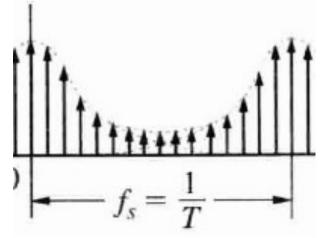


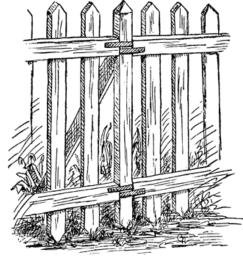
The Discrete Fourier Transform (DFT) (2)



Picket Fence Effect

- Numerical computation method yields uniform sampling values of X(ω).
- Information between samples in spectrum is missing picket fence effect:
- Can improve spectral resolution by increasing number of samples used in the window N₀, i.e. the period of signal being transformed T₀.





Formal definition of DFT

• If x[nT] and X[r ω_0] are the nth and rth samples of x(t) and X(ω) respectively, then we define:

$$x_n = T_s \times x[nT_s] = \frac{T_0}{N_0} x[nT] \quad \text{and} \quad X_r = X(r\omega_0)$$

where $\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$

Then $X_r = \sum x_n e^{-jr\Omega_0 n}$ $N_0 - 1$ Forward DFT $\Omega_0 = \omega_0 T = \frac{2\pi}{N_0}$ n=0 $x_n = \frac{1}{N_0} \sum_{r=0}^{N_0 - 1} X_r e^{jr\Omega_0 n}$ **Inverse DFT**

L8.5

Parseval's Theorem

• The energy of a signal x(t) can be derived in time or frequency domain:

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^{2} d\omega$$

Proof:

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \int_{-\infty}^{\infty} x(t)x^{*}(t) dt$$

$$x^{*}(t) \iff X^{*}(-\omega)$$

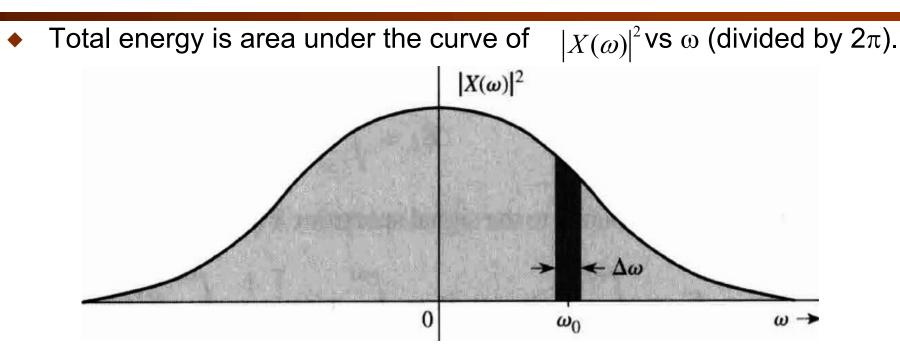
$$= \int_{-\infty}^{\infty} x(t) \frac{1}{2\pi} \int_{-\infty}^{\infty} X^{*}(\omega)e^{-j\omega t} d\omega dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X^{*}(\omega) \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)X^{*}(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^{2} d\omega$$
L7.6

Energy Spectral Density of a signal



• The energy over a small frequency band $\Delta \omega$ ($\Delta \omega \rightarrow 0$) is:

$$\Delta E_x = \frac{1}{2\pi} |X(\omega)|^2 \Delta \omega = |X(\omega)|^2 \Delta f \qquad \frac{\Delta \omega}{2\pi} = \Delta f \text{ Hz}$$

Energy spectral density (per unit bandwidth in Hz)

L7.6

Energy Spectral Density of a REAL signal

• If x(t) is a real signal, then $X(\omega)$ and $X(-\omega)$ are conjugate:

$$|X(\omega)|^2 = X(\omega)X^*(\omega) = X(\omega)X(-\omega)$$

• This implies that $X(\omega)$ is an even function. Therefore

$$E_x = \frac{1}{\pi} \int_0^\infty |X(\omega)|^2 \, d\omega$$

 Consequently, the energy contributed by a real signal by spectral components between ω₁ and ω₂ is:

$$\Delta E_x = \frac{1}{\pi} \int_{\omega_1}^{\omega_2} |X(\omega)|^2 d\omega$$

L7.6

Example

- Find the energy E of signal x(t) = e^{-at} u(t). Determine the frequency W (rad/s) so that the energy contributed by the spectral component from 0 to W is 95% of the total signal energy E.
- Take FT of x(t): $X(\omega) = \frac{1}{j\omega + a}$
- By Parseval's theorem:

$$E_x = \frac{1}{\pi} \int_0^\infty |X(\omega)|^2 d\omega = \frac{1}{\pi} \int_0^\infty \frac{1}{\omega^2 + a^2} d\omega = \frac{1}{\pi a} \tan^{-1} \frac{\omega}{a} \Big|_0^\infty = \frac{1}{2a}$$

• Energy in band 0 to W is 95% of this, therefore:

$$\frac{0.95}{2a} = \frac{1}{\pi} \int_0^W \frac{d\omega}{\omega^2 + a^2} = \frac{1}{\pi a} \tan^{-1} \frac{\omega}{a} \Big|_0^W = \frac{1}{\pi a} \tan^{-1} \frac{W}{a}$$
$$\frac{0.95\pi}{2} = \tan^{-1} \frac{W}{a} \implies W = 12.706a \text{ rad/s}$$

 Note: For this signal, 95% of energy is in the lower frequency band from 0 to 12.7a rad/s or 2.02a Hz!!!

Three Big Ideas

- Extracting a portion of a signal can be modelled by multiplying the signal with a rectangular window. However, the sudden changes at the window boundaries modify the signal spectrum.
- 2. This causes **spectral spreading** to neighbouring frequencies and leakages to higher frequencies. Both can be reduced by using other types of **window functions** such as Hamming or Hanning, which have smooth cut offs.
- **3.** Discrete Fourier Transform (DFT) is used to calculate the Fourier Transform in a computer. This is done by taking the windowed portion of the signal and construct a periodic signal from it. The result is a sampled Fourier Transform with frequency step $f_0 = 1/T_0$, where T_0 is the window function width.